3.1589 \(\int \frac{1}{(a+b x)^{2/3} \sqrt [3]{c+d x}} \, dx\)

Optimal. Leaf size=126 \[ -\frac{3 \log \left (\frac{\sqrt [3]{b} \sqrt [3]{c+d x}}{\sqrt [3]{d} \sqrt [3]{a+b x}}-1\right )}{2 b^{2/3} \sqrt [3]{d}}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{2 \sqrt [3]{b} \sqrt [3]{c+d x}}{\sqrt{3} \sqrt [3]{d} \sqrt [3]{a+b x}}+\frac{1}{\sqrt{3}}\right )}{b^{2/3} \sqrt [3]{d}}-\frac{\log (a+b x)}{2 b^{2/3} \sqrt [3]{d}} \]

[Out]

-((Sqrt[3]*ArcTan[1/Sqrt[3] + (2*b^(1/3)*(c + d*x)^(1/3))/(Sqrt[3]*d^(1/3)*(a + b*x)^(1/3))])/(b^(2/3)*d^(1/3)
)) - Log[a + b*x]/(2*b^(2/3)*d^(1/3)) - (3*Log[-1 + (b^(1/3)*(c + d*x)^(1/3))/(d^(1/3)*(a + b*x)^(1/3))])/(2*b
^(2/3)*d^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.014312, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {59} \[ -\frac{3 \log \left (\frac{\sqrt [3]{b} \sqrt [3]{c+d x}}{\sqrt [3]{d} \sqrt [3]{a+b x}}-1\right )}{2 b^{2/3} \sqrt [3]{d}}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{2 \sqrt [3]{b} \sqrt [3]{c+d x}}{\sqrt{3} \sqrt [3]{d} \sqrt [3]{a+b x}}+\frac{1}{\sqrt{3}}\right )}{b^{2/3} \sqrt [3]{d}}-\frac{\log (a+b x)}{2 b^{2/3} \sqrt [3]{d}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^(2/3)*(c + d*x)^(1/3)),x]

[Out]

-((Sqrt[3]*ArcTan[1/Sqrt[3] + (2*b^(1/3)*(c + d*x)^(1/3))/(Sqrt[3]*d^(1/3)*(a + b*x)^(1/3))])/(b^(2/3)*d^(1/3)
)) - Log[a + b*x]/(2*b^(2/3)*d^(1/3)) - (3*Log[-1 + (b^(1/3)*(c + d*x)^(1/3))/(d^(1/3)*(a + b*x)^(1/3))])/(2*b
^(2/3)*d^(1/3))

Rule 59

Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[d/b, 3]}, -Simp[(Sqrt
[3]*q*ArcTan[(2*q*(a + b*x)^(1/3))/(Sqrt[3]*(c + d*x)^(1/3)) + 1/Sqrt[3]])/d, x] + (-Simp[(3*q*Log[(q*(a + b*x
)^(1/3))/(c + d*x)^(1/3) - 1])/(2*d), x] - Simp[(q*Log[c + d*x])/(2*d), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0] && PosQ[d/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+b x)^{2/3} \sqrt [3]{c+d x}} \, dx &=-\frac{\sqrt{3} \tan ^{-1}\left (\frac{1}{\sqrt{3}}+\frac{2 \sqrt [3]{b} \sqrt [3]{c+d x}}{\sqrt{3} \sqrt [3]{d} \sqrt [3]{a+b x}}\right )}{b^{2/3} \sqrt [3]{d}}-\frac{\log (a+b x)}{2 b^{2/3} \sqrt [3]{d}}-\frac{3 \log \left (-1+\frac{\sqrt [3]{b} \sqrt [3]{c+d x}}{\sqrt [3]{d} \sqrt [3]{a+b x}}\right )}{2 b^{2/3} \sqrt [3]{d}}\\ \end{align*}

Mathematica [C]  time = 0.0266001, size = 71, normalized size = 0.56 \[ \frac{3 \sqrt [3]{a+b x} \sqrt [3]{\frac{b (c+d x)}{b c-a d}} \, _2F_1\left (\frac{1}{3},\frac{1}{3};\frac{4}{3};\frac{d (a+b x)}{a d-b c}\right )}{b \sqrt [3]{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^(2/3)*(c + d*x)^(1/3)),x]

[Out]

(3*(a + b*x)^(1/3)*((b*(c + d*x))/(b*c - a*d))^(1/3)*Hypergeometric2F1[1/3, 1/3, 4/3, (d*(a + b*x))/(-(b*c) +
a*d)])/(b*(c + d*x)^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.037, size = 0, normalized size = 0. \begin{align*} \int{ \left ( bx+a \right ) ^{-{\frac{2}{3}}}{\frac{1}{\sqrt [3]{dx+c}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(2/3)/(d*x+c)^(1/3),x)

[Out]

int(1/(b*x+a)^(2/3)/(d*x+c)^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x + a\right )}^{\frac{2}{3}}{\left (d x + c\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(2/3)/(d*x+c)^(1/3),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)^(2/3)*(d*x + c)^(1/3)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.91845, size = 1334, normalized size = 10.59 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(2/3)/(d*x+c)^(1/3),x, algorithm="fricas")

[Out]

[1/2*(sqrt(3)*b*d*sqrt((-b^2*d)^(1/3)/d)*log(3*b^2*d*x + b^2*c + 2*a*b*d + 3*(-b^2*d)^(1/3)*(b*x + a)^(1/3)*(d
*x + c)^(2/3)*b + sqrt(3)*(2*(b*x + a)^(2/3)*(d*x + c)^(1/3)*b*d - (-b^2*d)^(2/3)*(b*x + a)^(1/3)*(d*x + c)^(2
/3) + (-b^2*d)^(1/3)*(b*d*x + b*c))*sqrt((-b^2*d)^(1/3)/d)) + (-b^2*d)^(2/3)*log(((b*x + a)^(2/3)*(d*x + c)^(1
/3)*b*d + (-b^2*d)^(2/3)*(b*x + a)^(1/3)*(d*x + c)^(2/3) - (-b^2*d)^(1/3)*(b*d*x + b*c))/(d*x + c)) - 2*(-b^2*
d)^(2/3)*log(((b*x + a)^(1/3)*(d*x + c)^(2/3)*b*d - (-b^2*d)^(2/3)*(d*x + c))/(d*x + c)))/(b^2*d), 1/2*(2*sqrt
(3)*b*d*sqrt(-(-b^2*d)^(1/3)/d)*arctan(1/3*sqrt(3)*(2*(-b^2*d)^(2/3)*(b*x + a)^(1/3)*(d*x + c)^(2/3) - (-b^2*d
)^(1/3)*(b*d*x + b*c))*sqrt(-(-b^2*d)^(1/3)/d)/(b^2*d*x + b^2*c)) + (-b^2*d)^(2/3)*log(((b*x + a)^(2/3)*(d*x +
 c)^(1/3)*b*d + (-b^2*d)^(2/3)*(b*x + a)^(1/3)*(d*x + c)^(2/3) - (-b^2*d)^(1/3)*(b*d*x + b*c))/(d*x + c)) - 2*
(-b^2*d)^(2/3)*log(((b*x + a)^(1/3)*(d*x + c)^(2/3)*b*d - (-b^2*d)^(2/3)*(d*x + c))/(d*x + c)))/(b^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x\right )^{\frac{2}{3}} \sqrt [3]{c + d x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(2/3)/(d*x+c)**(1/3),x)

[Out]

Integral(1/((a + b*x)**(2/3)*(c + d*x)**(1/3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x + a\right )}^{\frac{2}{3}}{\left (d x + c\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(2/3)/(d*x+c)^(1/3),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)^(2/3)*(d*x + c)^(1/3)), x)